Covering Dimension of C*-Algebras and 2-Coloured Classification
نویسندگان
چکیده
منابع مشابه
Covering Dimension for Nuclear C * -algebras
We introduce the completely positive rank, a notion of covering dimension for nuclear C *-algebras and analyze some of its properties. The completely positive rank behaves nicely with respect to direct sums, quotients, ideals and inductive limits. For abelian C *-algebras it coincides with covering dimension of the spectrum and there are similar results for continuous trace algebras. As it turn...
متن کاملCovering Dimension for Nuclear C∗-algebras Ii
The completely positive rank is an analogue of the topological covering dimension, defined for nuclear C∗-algebras via completely positive approximations. These may be thought of as simplicial approximations of the algebra, which leads to the concept of piecewise homogeneous maps and a notion of noncommutative simplicial complexes. We introduce a technical variation of completely positive rank ...
متن کامل. O A ] 1 5 A ug 2 00 1 Covering Dimension for Nuclear C ∗ - Algebras II
The completely positive rank is an analogue of topological covering dimension, defined for nuclear C *-algebras via completely positive approximations. These may be thought of as simplicial approximations of the algebra, which leads to the concept of piecewise homogeneous maps and a notion of noncommutative simplicial complexes. We introduce a technical variation of the completely positive rank...
متن کاملdedekind modules and dimension of modules
در این پایان نامه، در ابتدا برای مدول ها روی دامنه های پروفر شرایط معادل به دست آورده ایم و خواصی از ددکیند مدول ها روی دامنه های پروفر مشخص کرده ایم. در ادامه برای ددکیند مدول های با تولید متناهی روی حلقه های به طور صحیح بسته شرایط معادل به دست آورده ایم و ددکیند مدول های ضربی را مشخص کرده ایم. گزاره هایی در مورد بعد ددکیند مدول ها بیان کرده ایم. در پایان، قضایای lying over و going down را برا...
15 صفحه اولDimension Growth for C-algebras
We introduce the growth rank of a C∗-algebra — a (N∪ {∞})-valued invariant whose minimal instance is equivalent to the condition that an algebra absorbs the Jiang-Su algebra Z tensorially — and prove that its range is exhausted by simple, nuclear C∗-algebras. As consequences we obtain a well developed theory of dimension growth for approximately homogeneous (AH) C∗-algebras, establish the exist...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Memoirs of the American Mathematical Society
سال: 2019
ISSN: 0065-9266,1947-6221
DOI: 10.1090/memo/1233